Personas are a well-known technique in human computer interaction. However, there is a lack of rigorous empirical research evaluating personas relative to other methods. In this 34-participant experiment, we compare a persona system and an analytics system, both using identical user data, for efficiency and effectiveness for a user identification task. Results show that personas afford faster task completion than the analytics system, as well as outperforming analytics with significantly higher user identification accuracy. Qualitative analysis of think-aloud transcripts shows that personas have other benefits regarding learnability and consistency. However, the analytics system affords insights and capabilities that personas cannot due to inherent design differences. Findings support the use of personas to learn about users, empirically confirming some of the stated benefits in the literature, while also highlighting the limitations of personas that may necessitate the use of accompanying methods.
https://doi.org/10.1145/3313831.3376770
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2020.acm.org/)