Virtual Reality (VR) allows for infinitely large environments. However, the physical traversable space is always limited by real-world boundaries. This discrepancy between physical and virtual dimensions renders traditional locomotion methods used in real world unfeasible. To alleviate these limitations, research proposed various artificial locomotion concepts such as teleportation, treadmills, and redirected walking. However, these concepts occupy the user's hands, require complex hardware or large physical spaces. In this paper, we contribute nine VR locomotion concepts for foot-based locomotion, relying on the 3D position of the user's feet and the pressure applied to the sole as input modalities. We evaluate our concepts and compare them to state-of-the-art point & teleport technique in a controlled experiment with 20 participants. The results confirm the viability of our approaches for foot-based and engaging locomotion. Further, based on the findings, we contribute a wireless hardware prototype implementation.
https://doi.org/10.1145/3313831.3376626
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2020.acm.org/)