Personal smart devices have demonstrated a variety of efficient techniques for pointing and selecting on physical displays. However, when migrating these input techniques to augmented reality, it is both unclear what the relative performance of different techniques will be given the immersive nature of the environment, and it is unclear how viewport-based versus world-based pointing methods will impact performance. To better understand the impact of device and viewing perspectives on pointing in augmented reality, we present the results of two controlled experiments comparing pointing conditions that leverage various smartphone- and smartwatch-based external display pointing techniques and examine viewport-based versus world-based target acquisition paradigms. Our results demonstrate that viewport-based techniques offer faster selection and that both smartwatch- and smartphone-based pointing techniques represent high-performance options for performing distant target acquisition tasks in augmented reality.
https://doi.org/10.1145/3313831.3376592
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2020.acm.org/)