We introduce VR Strider, a novel locomotion user interface (LUI) for seated virtual reality (VR) experiences, which maps cycling biomechanics of the user's legs to virtual walking movements. The core idea is to translate the motion of pedaling on a mini exercise bike to a corresponding walking animation of a virtual avatar while providing audio-based tactile feedback on virtual ground contacts. We conducted an experiment to evaluate the LUI and our novel anchor-turning rotation control method regarding task performance, spatial cognition, VR sickness, sense of presence, usability and comfort in a path-integration task. The results show that VR Strider has a significant positive effect on the participants' angular and distance estimation, sense of presence and feeling of comfort compared to other established locomotion techniques, such as teleportation and joystick-based navigation. A confirmatory study further indicates the necessity of synchronized avatar animations for virtual vehicles that rely on pedalling.
https://doi.org/10.1145/3313831.3376574
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2020.acm.org/)