Playtesting of games often relies on a mixed-methods approach to obtain more holistic insights about and, in turn, improve the player experience. However, triangulating the different data sources and visualizing them in an integrated manner such that they contextualize each other still proves challenging. Despite its potential value for gauging player behaviour, this area of research continues to be underexplored. In this paper, we propose a visualization approach that combines commonly tracked movement data with - from a visualization perspective rarely considered - gaze behaviour and emotional responses. We evaluated our approach through a qualitative expert study with five professional game developers. Our results show that both the individual visualization of gaze, emotions, and movement but especially their combination are valuable to understand and form hypotheses about player behaviour. At the same time, our results stress that careful attention needs to be paid to ensure that the visualization remains legible and does not obfuscate information.
https://doi.org/10.1145/3313831.3376401
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2020.acm.org/)