There is an increased use of Internet-of-Things and wearable sensing devices in the urban marathon to ensure effective response to unforeseen medical needs. However, the massive amount of real-time, heterogeneous movement and psychological data of runners impose great challenges on prompt medical incident analysis and intervention. Conventional approaches compile such data into one dashboard visualization to facilitate rapid data absorption but fail to support joint decision-making and operations in medical encounters. In this paper, we present MaraVis, a real-time urban marathon visualization and coordinated intervention system. It first visually summarizes real-time marathon data to facilitate the detection and exploration of possible anomalous events. Then, it calculates an optimal camera route with an arrangement of shots to guide offline effort to catch these events in time with a smooth view transition. We conduct a within-subjects study with two baseline systems to assess the efficacy of MaraVis.
https://doi.org/10.1145/3313831.3376281
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2020.acm.org/)