LEDs on a strip, when turned on and off in a specific order, result in the perception of apparent motion (i.e. beta movement). In the automotive domain such chase lights have been used to alter drivers' perception of driving speed by manipulating the pixel speed of LEDs. We argue that the perceived velocity of beta movement in the peripheral view is not only based on the actual pixel speed but can be influenced by other factors such as frequency, width and brightness of lit LED segments. We conducted a velocity matching experiment (N=25) by systematically varying these three properties, in order to determine their influence on a participant's perceived velocity in a vehicle mock-up. Results show that a higher frequency and stronger brightness increased perceived velocity, whereas segment width had no influence. We discuss how findings may be applied when designing systems that use beta movement to influence the perception of ambient light velocity.
https://doi.org/10.1145/3313831.3376203
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2020.acm.org/)