Chatbots have great potential to serve as a low-cost, effective tool to support people's self-disclosure. Prior work has shown that reciprocity occurs in human-machine dialog; however, whether reciprocity can be leveraged to promote and sustain deep self-disclosure over time has not been systematically studied. In this work, we design, implement and evaluate a chatbot that has self-disclosure features when it performs small talk with people. We ran a study with 47 participants and divided them into three groups to use different chatting styles of the chatbot for three weeks. We found that chatbot self-disclosure had a reciprocal effect on promoting deeper participant self-disclosure that lasted over the study period, in which the other chat styles without self-disclosure features failed to deliver. Chatbot self-disclosure also had a positive effect on improving participants' perceived intimacy and enjoyment over the study period. Finally, we reflect on the design implications of chatbots where deep self-disclosure is needed over time.
https://doi.org/10.1145/3313831.3376175
The ACM CHI Conference on Human Factors in Computing Systems (https://chi2020.acm.org/)