We propose a novel system for low-cost multi-color Fused Filament Fabrication (FFF) 3D printing, allowing for the creation of customizable colored filament using a pre-processing approach. We developed an open-source device to automatically ink filament using permanent markers. Our device can be built using 3D printed parts and off-the-shelf electronics. An accompanying web-based interface allows users to view GCODE toolpaths for a multi-color print and quickly generate filament color profiles. Taking a pre-processing approach makes this system compatible with the majority of desktop 3D printers on the market, as the processed filament behaves no differently from conventional filaments. Furthermore, inked filaments can be produced economically, reducing the need for excessive purchasing of material to expand color options. We demonstrate the efficacy of our system by fabricating monochromatic objects, objects with gradient colors, objects with bi-directional properties, as well as multi-color objects with up to four colors in a single print.
We present interiqr, a method that utilizes the infill parameter in the 3D printing process to embed information inside the food that is difficult to recognize with the human eye. Our key idea is to utilize the air space or secondary materials to generate a specific pattern inside the food without changing the model geometry. As a result, our method exploits the patterns that appear as hidden edible tags to store the data and simultaneously adds them to a 3D printing pipeline. Our contribution also includes the framework that connects the user with a data-embedding interface through the food 3D printing process, and the decoding system allows the user to decode the information inside the 3D printed food through backlight illumination and a simple image processing technique. Finally, we evaluate the usability of our method under different settings and demonstrate our method through the example application scenarios.
In this research, we used traditional sequin embroidery as the basis and a 3D printer to expand the design space of sequin materials and structures, by developing a new 2.5D smart conductive sequin textile with multiple sensing and interactions as well as providing users with a customizing system for automated design and manufacturing. Through 3D printing, we have developed a variety of 3D sequins. We used each sequin as an individual design unit to realize various circuit designs and sensing functions by adjusting the design primitives such as conductivity, shape, and arrangement. We also designed applications such as motion sensing of body movements, and posture detection of the ankle. In addition, we surveyed user requirements through user testing to optimize the design space. This paper describes the design space, design software, automation, application, and user study of various smart sequin textiles.
The unique behaviors of thermoplastic polymers enable shape-changing interfaces made of 3D printed objects that do not require complex electronics integration. While existing techniques greatly rely on external heat applied globally on a 3D printed object to initiate all at once the shape-changing behavior (e.g., hot water, heat gun, oven), independent control of multiple parts of the object becomes nearly impossible. We introduce ShrinkCells, a set of shape-changing actuators that rely on localized heat to shrink or bend. This is achieved by combining the properties of two materials --- conductive PLA is used to generate localized heat that selectively triggers the shrinking of a Shape Memory Polymer. The unique benefit of ShrinkCells is their capability of triggering simultaneous or sequential shape transformations for different geometries using a single power supply. The result is 3D printed rigid structures that actuate in sequence, avoiding self-collisions when unfolding. We contribute to the body of literature on 4D fabrication by a systematic investigation of selective heating with two different materials, the design and evaluation of the ShrinkCells shape-changing primitives, and applications demonstrating the usage of these actuators.