Educational support with data & systems

Paper session

会議の名前
CHI 2020
Toward Automated Feedback on Teacher Discourse to Enhance Teacher Learning
要旨

Like anyone, teachers need feedback to improve. Due to the high cost of human classroom observation, teachers receive infrequent feedback which is often more focused on evaluating performance than on improving practice. To address this critical barrier to teacher learning, we aim to provide teachers with detailed and actionable automated feedback. Towards this end, we developed an approach that enables teachers to easily record high-quality audio from their classes. Using this approach, teachers recorded 142 classroom sessions, of which 127 (89%) were usable. Next, we used speech recognition and machine learning to develop teacher-generalizable computer-scored estimates of key dimensions of teacher discourse. We found that automated models were moderately accurate when compared to human coders and that speech recognition errors did not influence performance. We conclude that authentic teacher discourse can be recorded and analyzed for automatic feedback. Our next step is to incorporate the automatic models into an interactive visualization tool that will provide teachers with objective feedback on the quality of their discourse.

キーワード
automatic speech recognition
audio recording
classroom discourse
dialogic instruction
natural language processing
著者
Emily Jensen
University of Colorado Boulder, Boulder, CO, USA
Meghan Dale
University of Pittsburgh, Pittsburgh, PA, USA
Patrick J. Donnelly
Oregon State University, Bend, OR, USA
Cathlyn Stone
University of Colorado Boulder, Boulder, CO, USA
Sean Kelly
University of Pittsburgh, Pittsburgh, PA, USA
Amanda Godley
University of Pittsburgh, Pittsburgh, PA, USA
Sidney K. D'Mello
University of Colorado Boulder, Boulder, CO, USA
DOI

10.1145/3313831.3376418

論文URL

https://doi.org/10.1145/3313831.3376418

From Data to Insights: A Layered Storytelling Approach for Multimodal Learning Analytics
要旨

Significant progress to integrate and analyse multimodal data has been carried out in the last years. Yet, little research has tackled the challenge of visualising and supporting the sensemaking of multimodal data to inform teaching and learning. It is naïve to expect that simply by rendering multiple data streams visually, a teacher or learner will be able to make sense of them. This paper introduces an approach to unravel the complexity of multimodal data by organising it into meaningful layers that explain critical insights to teachers and students. The approach is illustrated through the design of two data storytelling prototypes in the context of nursing simulation. Two authentic studies with educators and students identified the potential of the approach to create learning analytics interfaces that communicate insights on team performance, as well as concerns in terms of accountability and automated insights discovery.

キーワード
CSCW
teamwork
visualization
data storytelling
著者
Roberto Martinez-Maldonado
Monash University, Melbourne, VIC, Australia
Vanessa Echeverria
Escuela Superior Politécnica del Litoral & University of Technology Sydney, Sydney, NSW, Australia
Gloria Fernandez Nieto
University of Technology Sydney, Sydney, NSW, Australia
Simon Buckingham Shum
University of Technology Sydney, Sydney, NSW, Australia
DOI

10.1145/3313831.3376148

論文URL

https://doi.org/10.1145/3313831.3376148

AL: An Adaptive Learning Support System for Argumentation Skills
要旨

Recent advances in Natural Language Processing (NLP) bear the opportunity to analyze the argumentation quality of texts. This can be leveraged to provide students with individual and adaptive feedback in their personal learning journey. To test if individual feedback on students' argumentation will help them to write more convincing texts, we developed AL, an adaptive IT tool that provides students with feedback on the argumentation structure of a given text. We compared AL with 54 students to a proven argumentation support tool. We found students using AL wrote more convincing texts with better formal quality of argumentation compared to the ones using the traditional approach. The measured technology acceptance provided promising results to use this tool as a feedback application in different learning settings. The results suggest that learning applications based on NLP may have a beneficial use for developing better writing and reasoning for students in traditional learning settings.

受賞
Honorable Mention
キーワード
educational applications
pedagogical systems
argumentation learning
adaptive learning
著者
Thiemo Wambsganss
University of St.Gallen, Sankt Gallen, Switzerland
Christina Niklaus
University of St.Gallen, Sankt Gallen, Switzerland
Matthias Cetto
University of St.Gallen, St. Gallen, Switzerland
Matthias Söllner
University of Kassel & University of St.Gallen, St.Gallen, Switzerland
Siegfried Handschuh
University of St.Gallen & University of Passau, St. Gallen, Switzerland
Jan Marco Leimeister
University of St.Gallen & Kassel University, St. Gallen, Switzerland
DOI

10.1145/3313831.3376732

論文URL

https://doi.org/10.1145/3313831.3376732

動画
The TA Framework: Designing Real-time Teaching Augmentation for K-12 Classrooms
要旨

Recently, the HCI community has seen increased interest in the design of teaching augmentation (TA): tools that extend and complement teachers' pedagogical abilities during ongoing classroom activities. Examples of TA systems are emerging across multiple disciplines, taking various forms: e.g., ambient displays, wearables, or learning analytics dashboards. However, these diverse examples have not been analyzed together to derive more fundamental insights into the design of teaching augmentation. Addressing this opportunity, we broadly synthesize existing cases to propose the TA framework. Our framework specifies a rich design space in five dimensions, to support the design and analysis of teaching augmentation. We contextualize the framework using existing designs cases, to surface underlying design trade-offs: for example, balancing actionability of presented information with teachers' needs for professional autonomy, or balancing unobtrusiveness with informativeness in the design of TA systems. Applying the TA framework, we identify opportunities for future research and design.

キーワード
Teacher
Classroom
K-12
Augmented Intelligence
Ambient Intelligence
Orchestration
Dashboards
著者
Pengcheng An
Eindhoven University of Technology, Eindhoven, Netherlands
Kenneth Holstein
Carnegie Mellon University, Pittsburgh, PA, USA
Bernice d'Anjou
Eindhoven University of Technology, Eindhoven, Netherlands
Berry Eggen
Eindhoven University of Technology, Eindhoven, Netherlands
Saskia Bakker
Philips Experience Design, Eindhoven, Netherlands
DOI

10.1145/3313831.3376277

論文URL

https://doi.org/10.1145/3313831.3376277

INWARD: A Computer-Supported Tool for Video-Reflection Improves Efficiency and Effectiveness in Executive Coaching
要旨

Video-Reflection is a common approach to realize reflection in the field of executive coaching for professional development, which presents a video recording of the coaching session to a coachee in order to make the coachee reflectively think about oneself. However, it requires a great deal of time to watch the full length of the video and is highly dependent on the skills of the coach. We expect that the quality and efficiency of video-reflection can be improved with the support of computers. In this paper, we introduce INWARD, a computational tool that leverages human behavior analysis and video-based interaction techniques. The results of a user study involving 20 coaching sessions with five coaches indicate that INWARD enables efficient video-reflection and, by leveraging meta-reflection, realizes the ameliorated outcome of executive coaching. Moreover, discussions based on comments from the participants support the effectiveness of INWARD and suggest further possibilities of computer-supported approaches.

キーワード
Executive coaching
Video-Reflection
Meta-reflection
著者
Riku Arakawa
The University of Tokyo, Tokyo, Japan
Hiromu Yakura
Teambox Inc. & University of Tsukuba, Tokyo & Ibaraki, Japan
DOI

10.1145/3313831.3376703

論文URL

https://doi.org/10.1145/3313831.3376703